Design and Synthesis of Tri-Ring P3 Benzamide-Containing Aminonitriles as Potent, Selective, Orally Effective Inhibitors of Cathepsin K

Abstract
We have prepared a series of achiral aminoacetonitriles, bearing tri-ring benzamide moieties and an aminocyclohexanecarboxylate residue at P2. This combination of binding elements resulted in sub-250 pM, reversible, selective, and orally bioavailable cathepsin K inhibitors. Lead compounds displayed single digit nanomolar inhibition in vitro (of rabbit osteoclast-mediated degradation of bovine bone). The best compound in this series, 39n (CRA-013783/L-006235), was orally bioavailable in rats, with a terminal half-life of over 3 h. 39n was dosed orally in ovariectomized rhesus monkeys once per day for 7 days. Collagen breakdown products were reduced by up to 76% dose-dependently. Plasma concentrations of 39n above the bone resorption IC50 after 24 h indicated a correlation between functional cellular and in vivo assays. Inhibition of collagen breakdown by cathepsin K inhibitors suggests this mechanism of action may be useful in osteoporosis and other indications involving bone resorption.