UNC119 is required for G protein trafficking in sensory neurons

Abstract
UNC119 is a protein localized to the non-motile primary cilia. Here, Zhang et al. report the crystal structure of UNC119 and provide biochemical and cellular evidence that UNC119 is a lipid-binding protein that mediates G protein trafficking. The authors also show that that UNC119 function is conserved from GPCR trafficking in C. elegans olfactory neuron to transducin trafficking in mammalian photoreceptors. UNC119 is widely expressed among vertebrates and other phyla. We found that UNC119 recognized the acylated N terminus of the rod photoreceptor transducin α (Tα) subunit and Caenorhabditis elegans G proteins ODR-3 and GPA-13. The crystal structure of human UNC119 at 1.95-Å resolution revealed an immunoglobulin-like β-sandwich fold. Pulldowns and isothermal titration calorimetry revealed a tight interaction between UNC119 and acylated Gα peptides. The structure of co-crystals of UNC119 with an acylated Tα N-terminal peptide at 2.0 Å revealed that the lipid chain is buried deeply into UNC119′s hydrophobic cavity. UNC119 bound Tα-GTP, inhibiting its GTPase activity, thereby providing a stable UNC119–Tα-GTP complex capable of diffusing from the inner segment back to the outer segment after light-induced translocation. UNC119 deletion in both mouse and C. elegans led to G protein mislocalization. Thus, UNC119 is a Gα subunit cofactor essential for G protein trafficking in sensory cilia.