Crystal Structure of the Transition-Metal Molybdates and Tungstates. II. Diamagnetic Sc2(WO4)3

Abstract
Sc2(WO4)3, diamagnetic above 30°K, crystallizes in the orthorhombic system, Space Group Pnca, with lattice constantsa=9.596±0.004, b=13.330±0.003, and c=9.512±0.004 Å at 298°K. The complete x‐ray scattering pattern within a reciprocal lattice hemisphere of radius (sinθ)/λ=1.02 Å−1 was measured with PEXRAD. The crystal structure was solved by use of three‐dimen sional Patterson and Fourier series and refined by the method of least squares, using 1731 independent structure factors. The final agreement factor R is 0.0622. Scandium atoms occupy slightly distorted octahedra, with average Sc–O=2.063 Å and Sc–O distances ranging from 2.026±0.015 to 2.124±0.010 Å. Two crystallographically independent W atoms are surrounded by somewhat distorted tetrahedra: the W–O distances vary from 1.695±0.009 to 1.829±0.016 Å, the average being 1.761 Å. The thermal vibrations are significantly anisotropic. Sc2(WO4)3 forms the structure type for 23 trivalent metal tungstates and molybdates, including the nine smaller rare‐earth tungstates. The larger rare‐earth tungstates, crystallizing in the Eu2(WO4)3structure type, have 8 coordination about the rare‐earth ion; the smaller have 6 coordination. A simple correlation is found between the variation in radius ratio due to the lanthanide contraction and the change in coordination.

This publication has 22 references indexed in Scilit: