Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings.

Abstract
We showed previously that a gene, designated AX92, which is expressed at an early stage of cortex differentiation in the root apex of oilseed rape seedlings, is also expressed in embryos. To compare AX92 gene regulation during embryo-genesis and postembryonic growth, we constructed a chimeric gene consisting of AX92 5' and 3' untranslated and flanking regions fused with a beta-glucuronidase protein coding region. We showed that the chimeric gene is active in both developing cortex cells in the root apical meristems of transgenic oilseed rape seedlings and in cortex cells at the root end of embryonic axes. To determine whether the AX92 gene is regulated by a common mechanism in embryos and seedlings, we analyzed the expression of modified chimeric genes. We showed that the AX92 chimeric gene is regulated combinatorially and that DNA sequences located 3' of the protein coding region are necessary for its activation in the root cortex of both embryos and seedlings. Our results suggest that common regulatory sequences are required to activate the gene in the embryonic and postembryonic root cortex.