A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting

Abstract
With rapid increase in wind power penetration into the power grid, wind power forecasting is becoming increasingly important to power system operators and electricity market participants. The majority of the wind forecasting tools available in the literature provide deterministic prediction, but given the variability and uncertainty of wind, such predictions limit the use of the existing tools for decision-making under uncertain conditions. As a result, probabilistic forecasting, which provides information on uncertainty associated with wind power forecasting, is gaining increased attention. This paper presents a novel hybrid intelligent algorithm for deterministic wind power forecasting that utilizes a combination of wavelet transform (WT) and fuzzy ARTMAP (FA) network, which is optimized by using firefly (FF) optimization algorithm. In addition, support vector machine (SVM) classifier is used to minimize the wind power forecast error obtained from WT+FA+FF. The paper also presents a probabilistic wind power forecasting algorithm using quantile regression method. It uses the wind power forecast results obtained from the proposed hybrid deterministic WT+FA+FF+SVM model to evaluate the probabilistic forecasting performance. The performance of the proposed forecasting model is assessed utilizing wind power data from the Cedar Creek wind farm in Colorado.
Funding Information
  • DOE (DE-FG02-11ER46817)