Planning Biodegradable Waste Management in Stockholm

Abstract
The environmental impact of the management of biodegradable waste in Stockholm, based mainly on incineration and landfilling, was compared to systems with significant nutrient recycling; large-scale composting, anaerobic digestion, and separate collection and utilization of urine. The systems' emissions, residual products, energy turnover, and resource consumption were evaluated from a life-cycle perspective, using a computerized model, ORWARE (ORganic WAste REsearch model). Transportation was of relatively low importance to overall environmental impact, even at high rates of nutrient recycling. This is remarkable considering the geographical setting of Stockholm, with high population density and little nearby farmland. Ancillary systems, such as generation of electricity and district heating, were crucial for the overall outcome. Increased recycling of nutrients in solid biodegradable waste in Stockholm can reduce net environmental impact, whereas separation of human urine to be spread as fertilizer cannot yet be introduced without increased acidification. Increased nutrient recycling from solid biodegradable waste inevitably increases spreading of metals on arable land. Urine is by far the least contaminated residual product. Spreading of all other residuals would be limited by their metal content.