Abstract
MIMO systems are characterized by their maximum available capacity, which is reduced if there is correlation between the signals on different channels. The correlation is primarily caused by mutual coupling between the elements of the antenna arrays on both the receiving and transmitting sides. Similarly, diversity antennas can be characterized by a diversity gain that also is affected by mutual coupling between the antennas. We explain how such MIMO and diversity antennas with mutual coupling can be analyzed by classical embedded element patterns that can be computed by standard computer codes. In the MIMO example under investigation, the mutual coupling reduces both correlation, which increases the capacity, and radiation efficiency, which decreases it, and the combined effect is a net capacity reduction. We also explain how the radiation efficiency, diversity gain, correlation, and channel capacity can be measured in a reverberation chamber. The measurements show good agreement with simulations.