Mushrooms and other billiards with divided phase space

Abstract
We present the first natural and visible examples of Hamiltonian systems with divided phase space allowing a rigorous mathematical analysis. The simplest such family (mushrooms) demonstrates a continuous transition from a completely chaotic system (stadium) to a completely integrable one (circle). In the course of this transition, an integrable island appears, grows and finally occupies the entire phase space. We also give the first examples of billiards with a “chaotic sea” (one ergodic component) and an arbitrary (finite or infinite) number of KAM islands and the examples with arbitrary (finite or infinite) number of chaotic (ergodic) components with positive measure coexisting with an arbitrary number of islands. Among other results is the first example of completely understood (rigorously studied) billiards in domains with a fractal boundary.

This publication has 3 references indexed in Scilit: