Fidelity trade-off for finite ensembles of identically prepared qubits

Abstract
We calculate the trade-off between the quality of estimating the quantum state of an ensemble of identically prepared qubits and the minimum level of disturbance that has to be introduced by this procedure in quantum mechanics. The trade-off is quantified using two mean fidelities: the operation fidelity, which characterizes the average resemblance of the final qubit state to the initial one, and the estimation fidelity, describing the quality of the obtained estimate. We analyze properties of quantum operations saturating the achievability bound for the operation fidelity versus the estimation fidelity, which allows us to reduce substantially the complexity of the problem of finding the trade-off curve. The reduced optimization problem has the form of an eigenvalue problem for a set of tridiagonal matrices, and it may be easily solved using standard numerical tools.