A novel role for Gemin5 in mRNA translation

Abstract
In eukaryotic cells translation initiation occurs through two alternative mechanisms, a cap-dependent operating in the majority of mRNAs, and a 5′-end-independent driven by internal ribosome entry site (IRES) elements, specific for a subset of mRNAs. IRES elements recruit the translation machinery to an internal position in the mRNA through a mechanism involving the IRES structure and several trans -acting factors. Here, we identified Gemin5 protein bound to the foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) IRES using two independent approaches, riboproteomic analysis and immunoprecipitation of photocroslinked factors. Functional analysis performed in Gemin5 shRNA-depleted cells, or in in vitro translation reactions, revealed an unanticipated role of Gemin5 in translation control as a down-regulator of cap-dependent and IRES-driven translation initiation. Consistent with this, pull-down assays showed that Gemin5 forms part of two distinct complexes, a specific IRES-ribonucleoprotein complex and an IRES-independent protein complex containing eIF4E. Thus, beyond its role in snRNPs biogenesis, Gemin5 also functions as a modulator of translation activity.