Abstract
Urinary acidification in the mammalian collecting tubule is similar to that in the turtle bladder, an epithelium whose H+ secretion is due to a luminal proton-translocating ATPase. We isolated a fraction from bovine renal medulla, which contains ATP-dependent proton transport. H+ transport was found to be electrogenic in that its rate was reduced by a membrane potential. H+ transport activity was inhibited by N-ethyl maleimide and dicyclohexyl carbodiimide, but not by oligomycin or vanadate; its activity did not depend on the presence of potassium, differentiating this ATPase from the mitochondrial F0-F1 ATPase and the gastric H+-K+ ATPase. H+ transport activity had a specific substrate requirement for ATP, distinguishing this pump from the lysosomal H+ ATPase, which uses guanosine or inosine triphosphate as well. The distribution of this H+ pump on linear sucrose density gradient was different from that of markers of lysosomes and basolateral membranes. These results show that the kidney medulla contains an H+ -translocating ATPase different from mitochondrial, gastric, and lysosomal proton pumps, but similar to the turtle bladder ATPase.

This publication has 17 references indexed in Scilit: