Formulating gels for decreased mucociliary transport using rheologic properties: Polyacrylic acids

Abstract
The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clerance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (η) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of η and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.