Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data

Abstract
Data from the 1987 summer FIFE experiment for four pairs of days are compared with corresponding 48-h forecasts from two different versions of the Eta Model, both initialized from the NCEP–NCAR (National Centers for Environmental Prediction–National Center for Atmospheric Research) global reanalysis. One used the late 1995 operational Eta Model physics, the second, with a new soil and land surface scheme and revisions to the surface layer and boundary layer schemes, used the physics package that became operational on 31 January 1996. Improvements in the land surface parameterization and its interaction with the atmosphere are one key to improved summer precipitation forecasts. The new soil thermal model is an improvement over the earlier slab soil model, although the new skin temperature generally now has too large a diurnal cycle (whereas the old surface temperature had too small a diurnal cycle) and is more sensitive to net radiation errors. The nighttime temperature minima are often too low, b... Abstract Data from the 1987 summer FIFE experiment for four pairs of days are compared with corresponding 48-h forecasts from two different versions of the Eta Model, both initialized from the NCEP–NCAR (National Centers for Environmental Prediction–National Center for Atmospheric Research) global reanalysis. One used the late 1995 operational Eta Model physics, the second, with a new soil and land surface scheme and revisions to the surface layer and boundary layer schemes, used the physics package that became operational on 31 January 1996. Improvements in the land surface parameterization and its interaction with the atmosphere are one key to improved summer precipitation forecasts. The new soil thermal model is an improvement over the earlier slab soil model, although the new skin temperature generally now has too large a diurnal cycle (whereas the old surface temperature had too small a diurnal cycle) and is more sensitive to net radiation errors. The nighttime temperature minima are often too low, b...