Single-copy transgenic mice with chosen-site integration.

Abstract
We describe a general way of introducing transgenes into the mouse germ line for comparing different sequences without the complications of variation in copy number and insertion site. The method uses homologous recombination in embryonic stem (ES) cells to generate mice having a single copy of a transgene integrated into a chosen location in the genome. To test the method, a single copy murine bcl-2 cDNA driven by either a chicken beta-actin promoter or a human beta-actin promoter has been inserted immediately 5' to the X-linked hypoxanthine phosphoribosyltransferase locus by a directly selectable homologous recombination event. The level of expression of the targeted bcl-2 transgene in ES cells is identical in independently isolated homologous recombinants having the same promoter yet varies between the different promoters. In contrast, the expression of bcl-2 transgenes having the same (chicken beta-actin) promoter varies drastically when they are independently integrated at random insertion sites. Both promoters direct broad expression of the single-copy transgene in mice derived from the respective targeted ES cells. In vitro and in vivo, the human beta-actin promoter consistently directed a higher level of transgene expression than the chicken beta-actin promoter.