Abstract
In practical industrial applications, the key performance indicator (KPI)-related prediction and diagnosis are quite important for the product quality and economic benefits. To meet these requirements, many advanced prediction and monitoring approaches have been developed which can be classified into model-based or data-driven techniques. Among these approaches, partial least squares (PLS) is one of the most popular data-driven methods due to its simplicity and easy implementation in large-scale industrial process. As PLS is totally based on the measured process data, the characteristics of the process data are critical for the success of PLS. Outliers and missing values are two common characteristics of the measured data which can severely affect the effectiveness of PLS. To ensure the applicability of PLS in practical industrial applications, this paper introduces a robust version of PLS to deal with outliers and missing values, simultaneously. The effectiveness of the proposed method is finally demonstrated by the application results of the KPI-related prediction and diagnosis on an industrial benchmark of Tennessee Eastman process.