Abstract
We describe a quantitative assay of transendothelial migration (TEM) that allows us to selectively study the interaction of monocytes with confluent human endothelial cell (HEC) monolayers. The HEC are grown on hydrated collagen gels; the monocytes need not be purified. 100% of monocytes transmigrated the monolayer within 1 h at 37 degrees C and accumulated in the subendothelial collagen; TEM of lymphocytes was not detected within this time. Migration of neutrophils from the same donor was much slower and incomplete, with only 14% of PMN transmigrating in 2 h. This rapid TEM occurs in the absence of exogenous chemoattractants, and HEC in this system do not express cytokine-inducible leukocyte adhesion molecules. A slight modification of the TEM assay allowed us to separate binding to the apical HEC surface from TEM. We found that tight apical surface binding was the rate-limiting step for TEM. Two-thirds of this binding and TEM could be blocked by a monoclonal antibody against the leukocyte beta 2 integrin chain CD18. This assay will allow us to dissect the mechanisms of both the binding and transmigration stages of diapedesis.