Quantum algorithms: entanglement–enhanced information processing

Abstract
We discuss the fundamental role of entanglement as the essential nonclassical feature providing the computational speedup in the known quantum algorithms. We review the construction of the Fourier transform on an Abelian group and the principles underlying the fast Fourier transform algorithm. We describe the implementation of the FFT algorithm for the group of integers modulo 2n in the quantum context, showing how the group–theoretic formalism leads to the standard quantum network and identifying the property of entanglement that gives rise to the exponential speedup (compared to the classical FFT). Finally we outline the use of the Fourier transform in extracting periodicities, which underlies its utility in the known quantum algorithms.

This publication has 10 references indexed in Scilit: