Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic

Abstract
The aim of this study was to evaluate the effects of sintering temperature and particle size on the translucency of yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramic. Eighty disc-shaped and cylindrical specimens were fabricated from zirconia powers of particle size 40 and 90 nm. These specimens were sintered densely at the final sintering temperature 1350, 1400, 1450 and 1500°C, respectively. The visible light transmittance, sintered density and microstructure of the sintered block were examined. The results showed that the sintered densities and transmittances increased with the temperature from 1,350 to 1,500°C. Y-TZP could gain nearly full density and about 17-18% transmittance at the final sintering temperature of 1,450-1,500°C. The 40-nm powders had higher sintered density and transmittance than the 90-nm. The translucency of Y-TZP dental ceramic could be improved by controlling the final sintering temperature and primary particle size.