Augmenting microgel flow viareceptor-ligand binding in the constrained geometries of microchannels

Abstract
We investigated the flow dynamics of biotin-conjugated microgel capsules in avidin-conjugated microchannel constrictions. Microgels were prepared using a microfluidic assembly approach. Biotinylated microgels passing through avidin-modified constrictions slowed relative to several control systems. This effect was observed below a critical velocity of the microgels in the channel-at-large. The reduction in microgel velocity in the constriction occurred for several different sizes of microgels and orifices. Soft compliant microgels showed a lower velocity in the constriction relative to rigid microgels with the same concentration of biotin on the surface, due to the ability of the softer microgels to deform in the orifice and maximize their surface area when in contact with the orifice wall.