Apolipoprotein E enhances uptake of soluble but not aggregated amyloid‐β protein into synaptic terminals

Abstract
The cellular mechanism by which apolipoprotein E (apoE) affects the pathogenesis of Alzheimer's disease (AD) is not understood. We have examined the effect of apolipoprotein E on the internalization of exogenous amyloid-beta 1-40 (Abeta40) into a rat brain crude synaptosomal preparation. Abeta40 peptide in soluble (within 1 h of dilution in buffer) or aggregated (aged 4 days before dilution in buffer) form was pre-incubated with lipidated apoE then added to synaptosomes; intraterminal amyloid-beta labeling was quantified using flow cytometry following immunolabeling with the anti-Abeta (10G4) antibody. The number of Abeta-positive synaptosomes was increased ( approximately 50%) by treatment with a soluble Abeta/apoE mixture compared with treatment with soluble Abeta40 alone. However, when the Abeta was aggregated, less sodium dodecyl sulfate (SDS)-stable Abeta/apoE complex was formed and the addition of apoE decreased the number of Abeta-positive terminals. The addition of the lipoprotein-receptor related protein (LRP) antagonist receptor-associated protein (RAP) inhibited the apoE-induced increase in synaptosomal Abeta, and controls treated with trypsin and heparinase confirm intraterminal localization of the majority of the soluble Abeta. The apoE-mediated increase in Abeta labeling was confirmed in intact cells by immunocytochemistry of dorsal root ganglion (DRG) neurons. These results suggest that complex formation with apoE enhances internalization of soluble Abeta uptake into terminals.