Generating Bessel beams by use of localized modes

Abstract
We propose a novel method for generating both propagating and evanescent Bessel beams. To generate propagating Bessel beams we propose using a pair of distributed Bragg reflectors (DBRs) with a resonant point source on one side of the system. Those modes that couple with the localized modes supported by the DBR system will be selectively transmitted. This is used to produce a single narrow band of transmission in κ space that, combined with the circular symmetry of the system, yields a propagating Bessel beam. We present numerical simulations showing that a propagating Bessel beam with central spot size of 0.5λ0 can be maintained for a distance in excess of 3000λ0. To generate evanescent Bessel beams we propose using transmission of a resonant point source through a thin film. A transmission resonance is produced as a result of the multiple scattering occurring between the interfaces. This narrow resonance combined with the circular symmetry of the system corresponds to an evanescent Bessel beam. Because propagating modes are also transmitted, although the evanescent transmission resonance is many orders of magnitude greater than the transmission for the propagating modes, within a certain distance the propagating modes swamp the exponentially decaying evanescent ones. Thus there is only a certain regime in which evanescent Bessel beams dominate. However, within this regime the central spot size of the beam can be made significantly smaller than the wavelength of light used. Thus evanescent Bessel beams may have technical application, in high-density recording for example. We present numerical simulations showing that with a simple glass thin film an evanescent Bessel beam with central spot size of 0.34λ0 can be maintained for a distance of 0.14λ0. By choice of different material parameters, the central spot size can be made smaller still.

This publication has 8 references indexed in Scilit: