Determination of mercury and organomercurial resistance in obligate anaerobic bacteria

Abstract
A methodology for determining the minimum inhibitory concentration of inorganic and organomercurial compounds for obligate anaerobic bacteria is described. A wide variation in the susceptibility of anaerobic clinical and sewage isolates was observed. Isolates of Bacteroides ruminicola and Clostridium perfringens resistant to mercury were examined for their plasmid content and ability to demonstrate inducible resistance. None of the resistant anaerobes contained any plasmids, while resistant facultative isolates from the same source contained several plasmids. In 24 h, resistant strains of Clostridia and Bacteroides volatilized 20 and 43% of the 203Hg2+ added to cultures, while Escherichia coli R100 and a sewage isolate of Enterobacter cloacae volatilized 63 and 27%, respectively, of the added 203Hg2+. Attempts to induce mercury resistance in the aerobic isolates were successful, but no induction was seen in the anaerobes. Thus, mercury resistance in these anaerobic isolates was neither inducible nor plasmid mediated.