Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells

Abstract
Ultrasound has been shown to reversibly and irreversibly disrupt membranes of viable cells through a mechanism believed to involve cavitation. Because cavitation is both temporally and spatially heterogeneous, flow cytometry was used to identify and quantify heterogeneity in the effects of ultrasound on molecular uptake and cell viability on a cell-by-cell basis for suspensions of DU145 prostate cancer and aortic smooth muscle cells exposed to varying peak negative acoustic pressures (0.6-3.0 MPa). exposure times (120-2,000 ms), and pulse lengths (0.02-60 ms) in the presence of Optison (1.7% v/v) contrast agent. Cell-to-cell heterogeneity was observed at all conditions studied and was classified into three subpopulations: nominal uptake (NUP), low uptake (LUP), and high uptake (HUP) populations. The average number of molecules within each subpopulation was generally constant: 10(4)-10(5) molecules/cell in NUP, approximately 10(6) molecules/cell in LUP, and approximately 10(7) molecules/cell in HUP. However, the fraction of cells within each subpopulation showed a strong dependence on both acoustic pressure and exposure time. Varying pulse length produced no significant effect. The distribution of cells among the three subpopulations correlated with acoustic energy exposure, which suggests that energy exposure may govern the ability of ultrasound to induce bioeffects by a nonthermal mechanism.

This publication has 14 references indexed in Scilit: