Estrogen promotes tumor progression in a genetically defined mouse model of lung adenocarcinoma

Abstract
Numerous epidemiological observations point to sex differences in lung cancer etiology and progression. The present study was aimed at understanding the bases of these sex differences. To test the effect of estradiol on tumor progression, we used a mouse model based on conditional Kras expression and concurrent deletion of Tp53 following inhalation of an adenoviral vector expressing Cre recombinase (AdeCre). Ovariectomized females and males were treated with estradiol via a continuous-release capsule. Tumor multiplicity, tumor volume, and histological grade were determined at 10 weeks after AdeCre administration. Cell proliferation was monitored by Ki67 immunohistochemistry at 4 and 10 weeks after AdeCre administration. At 10 weeks, female mice had more than twice the number of tumors evident on the surface of the lungs than male mice; ovariectomy eliminated this sex difference. The estrogen treatment significantly increased tumor number and volume in ovariectomized females and in males. Histological character of the tumors ranged from adenoma to adenocarcinoma. Ovary-intact females exhibited higher grade tumors than ovariectomized females or males. Progression to higher histological grade was stimulated by estrogen in male mice but not in ovariectomized females. At 10 weeks after AdeCre administration, tumor cell Ki67-labeling varied widely, precluding assessment of an estrogen effect; however, at 4 weeks, Ki67 labeling of lung parenchymal cells was increased 3.5-fold by estrogen. In conclusion, estrogen acts as a promoter for lung adenocarcinoma in a genetically defined lung cancer model; estrogen-induced cell proliferation in the oncogene-initiated cells is likely to play a role in this tumor promoter activity.