Using adaptively coupled models and high-performance computing for enabling the computability of dust storm forecasting

Abstract
Forecasting dust storms for large geographical areas with high resolution poses great challenges for scientific and computational research. Limitations of computing power and the scalability of parallel systems preclude an immediate solution to such challenges. This article reports our research on using adaptively coupled models to resolve the computational challenges and enable the computability of dust storm forecasting by dividing the large geographical domain into multiple subdomains based on spatiotemporal distributions of the dust storm. A dust storm model (Eta-8bin) performs a quick forecasting with low resolution (22 km) to identify potential hotspots with high dust concentration. A finer model, non-hydrostatic mesoscale model (NMM-dust) performs high-resolution (3 km) forecasting over the much smaller hotspots in parallel to reduce computational requirements and computing time. We also adopted spatiotemporal principles among computing resources and subdomains to optimize parallel systems and improve the performance of high-resolution NMM-dust model. This research enabled the computability of high-resolution, large-area dust storm forecasting using the adaptively coupled execution of the two models Eta-8bin and NMM-dust.

This publication has 39 references indexed in Scilit: