Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain

Abstract
We quantified the size-dependent energy bandgap modulation of ZnO nanowires under tensile strain by an in situ measurement system combining a uniaxial tensile setup with a cathodoluminescence spectroscope. The maximal strain and corresponding bandgap variation increased by decreasing the size of the nanowires. The adjustable bandgap for the 100 nm nanowire caused by a strain of 7.3% reached approximately 110 meV, which is nearly double the value of 59 meV for the 760 nm nanowire with a strain of 1.7%. A two-step linear feature involving bandgap reduction caused by straining and a corresponding critical strain was identified in ZnO nanowires with diameters less than 300 nm. The critical strain moved toward the high strain level with shrunken nanowires. The distinct size effect of strained nanowires on the bandgap variation reveals a competition between core-dominated and surface-dominated bandgap modulations. These results could facilitate potential applications involving nanowire-based optoelectronic devices and band-strain engineering.