Abstract
In this paper, we describe a blind calibration method for gain and timing mismatches in a two-channel time-interleaved low-pass analog-to-digital converters (ADC). The method requires that the input signal should be slightly oversampled. This ensures that there exists a frequency band around the zero frequency where the Fourier transforms of the ADC subchannels are alias free. Low-pass filtering the ADC subchannels to this alias-free band reduces the blind calibration problem to a conventional gain and time delay estimation problem for an unknown signal in noise. An adaptive filtering structure with three fixed FIR filters and two adaptive gain and delay parameters is employed to achieve the calibration. A convergence analysis is presented for the blind calibration technique. Numerical simulations for a bandlimited white noise input and for inputs containing several sinusoidal components demonstrate the effectiveness of the proposed method

This publication has 24 references indexed in Scilit: