Training in virtual environments: transfer to real world tasks and equivalence to real task training

Abstract
Virtual environments (VEs) are extensively used in training but there have been few rigorous scientific investigations of whether and how skills learned in a VE are transferred to the real world. This research aimed to measure and evaluate what is transferring from training a simple sensorimotor task in a VE to real world performance. In experiment 1, real world performances after virtual training, real training and no training were compared. Virtual and real training resulted in equivalent levels of post-training performance, both of which significantly exceeded task performance without training. Experiments 2 and 3 investigated whether virtual and real trained real world performances differed in their susceptibility to cognitive and motor interfering tasks (experiment 2) and in terms of spare attentional capacity to respond to stimuli and instructions which were not directly related to the task (experiment 3). The only significant difference found was that real task performance after training in a VE was less affected by concurrently performed interference tasks than was real task performance after training on the real task. This finding is discussed in terms of the cognitive load characteristics of virtual training. Virtual training therefore resulted in equivalent or even better real world performance than real training in this simple sensorimotor task, but this finding may not apply to other training tasks. Future research should be directed towards establishing a comprehensive knowledge of what is being transferred to real world performance in other tasks currently being trained in VEs and investigating the equivalence of virtual and real trained performances in these situations.