Postural Muscle Responses to Multidirectional Translations in Patients With Parkinson's Disease

Abstract
The postural adaptation impairments of patients with Parkinson's disease (PD) suggest that the basal ganglia may be important for quickly modifying muscle activation patterns when the direction of perturbation or stance conditions suddenly change. It is unknown whether their particular instability to backward postural perturbations is due to specific abnormalities of parkinsonian postural muscle synergies in that direction and not present in other directions. In the present study, we test this hypothesis by comparing the patterns of leg and trunk muscle activation in13 subjects with PD and 13 control subjects in response to eight randomly presented directions of horizontal surface translations while standing with either narrow or wide stance. The direction of maximum activation for each muscle was similar for PD and control subjects, suggesting that the basal ganglia is not critical for programming externally triggered postural synergies. However, antagonist muscle activation was earlier and larger in PD than in control subjects, resulting in coactivation. PD subjects also did not increase the magnitude of muscle activation as much as did control subjects when changing from wide to narrow stance. These results are consistent with the hypothesis that PD results in an inability to shape the pattern and magnitude of postural muscle responses for changes in perturbation direction and in stance position.