Surface Modification of Nanoporous Alumina Surfaces with Poly(ethylene glycol)

Abstract
Nanoporous alumina surfaces have a variety of applications in biosensors, biofiltration, and targeted drug delivery. However, the fabrication route to create these nanopores in alumina results in surface defects in the crystal lattice. This results in inherent charge on the porous surface causing biofouling, that is, nonspecific adsorption of biomolecules. Poly(ethylene glycol) (PEG) is known to form biocompatible nonfouling films on silicon surfaces. However, its application to alumina surfaces is very limited and has not been well investigated. In this study, we have covalently attached PEG to nanoporous alumina surfaces to improve their nonfouling properties. A PEG−silane coupling technique was used to modify the surface. Different concentrations of PEG for different immobilization times were used to form PEG films of various grafting densities. X-ray photoelectron spectroscopy (XPS) was used to verify the presence of PEG moieties on the alumina surface. High-resolution C1s spectra show that with an increase in concentration and immobilization time, the grafting density of PEG also increases. Further, a standard overlayer model was used to calculate the thickness of PEG films formed using the XPS intensities of the Al2p peaks. The films formed by this technique are less than 2.5 nm thick, suggesting that such films will not clog the pores which are in the range of 70−80 nm.