SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer

Abstract
Deregulation of cytokine and growth factor signaling due to an altered expression of endogenous regulators is well recognized in prostate cancer (PCa) and other cancers. Suppressor of cytokine signaling 2 (SOCS2) is a key regulator of the GH, IGF, and prolactin signaling pathways that have been implicated in carcinogenesis. In this study, we evaluated the expression patterns and functional significance of SOCS2 in PCa. Protein expression analysis employing tissue microarrays from two independent patient cohorts revealed a significantly enhanced expression in tumor tissue compared with benign tissue as well as association with Gleason score and disease progression. In vitro and in vivo assays uncovered the involvement of SOCS2 in the regulation of cell growth and apoptosis. Functionally, SOCS2 knockdown inhibited PCa cell proliferation and xenograft growth in a CAM assay. Decreased cell growth after SOCS2 downregulation was associated with cell-cycle arrest and apoptosis. In addition, we proved that SOCS2 expression is significantly elevated upon androgenic stimulation in androgen receptor (AR)-positive cell lines, providing a possible mechanistic explanation for high SOCS2 levels in PCa tissue. Consequently, SOCS2 expression correlated with AR expression in the malignant tissue of patients. On the whole, our study linked increased SOCS2 expression in PCa with a pro-proliferative role in vitro and in vivo. Abstract Deregulation of cytokine and growth factor signaling due to an altered expression of endogenous regulators is well recognized in prostate cancer (PCa) and other cancers. Suppressor of cytokine signaling 2 (SOCS2) is a key regulator of the GH, IGF, and prolactin signaling pathways that have been implicated in carcinogenesis. In this study, we evaluated the expression patterns and functional significance of SOCS2 in PCa. Protein expression analysis employing tissue microarrays from two independent patient cohorts revealed a significantly enhanced expression in tumor tissue compared with benign tissue as well as association with Gleason score and disease progression. In vitro and in vivo assays uncovered the involvement of SOCS2 in the regulation of cell growth and apoptosis. Functionally, SOCS2 knockdown inhibited PCa cell proliferation and xenograft growth in a CAM assay. Decreased cell growth after SOCS2 downregulation was associated with cell-cycle arrest and apoptosis. In addition, we proved that SOCS2 expression is significantly elevated upon androgenic stimulation in androgen receptor (AR)-positive cell lines, providing a possible mechanistic explanation for high SOCS2 levels in PCa tissue. Consequently, SOCS2 expression correlated with AR expression in the malignant tissue of patients. On the whole, our study linked increased SOCS2 expression in PCa with a pro-proliferative role in vitro and in vivo.