Piezoelectric tip-sample distance control for near field optical microscopes

Abstract
An aluminum coated tapered optical fiber is rigidly attached to one of the prongs of a high Q piezoelectric tuning fork. The fork is mechanically dithered at its resonance frequency (33 kHz) so that the tip amplitude does not exceed 0.4 nm. A corresponding piezoelectric signal is measured on electrodes appropriately placed on the prongs. As the tip approaches within 20 nm above the sample surface a 0.1 nN drag force acting on the tip causes the signal to reduce. This signal is used to position the optical fiber tip to about 0 to 25 nm above the sample. Shear forces resulting from the tip-sample interaction can be quantitatively deduced.