Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings

Abstract
The design of an airfoil structure involves the disciplines of aerodynamics and structural mechanics, both of which are considered in the design methodology presented in this article. The approach described in this article starts from a requirement formulation based on a time-series of spanwise lift distributions on a morphing wing, representing the mission profile of the aircraft as a whole. This allows to specify goals based directly on aerodynamic performances instead of prescribing fixed geometrical shapes. Using the aero-structural analysis tool presented here, together with a parametrization representing the airfoil outer shape as well as its mechanical properties, allows the formulation of a combined aero-structural optimization problem. Promising aerodynamic and structural morphing performances have been obtained by applying the method to a morphing concept using Dielectric Elastomers (DEs) as actuators. Although the coupled physics are considered and a detailed material model has been used, results can be obtained within reasonable computational time by parallel evaluation of the candidate solutions. Improved aerodynamic performances have been obtained using this concurrent coupled method, in comparison to a sequential aerodynamic and structural optimization.

This publication has 28 references indexed in Scilit: