Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance

Top Cited Papers
Open Access
Abstract
The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes in vivo. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment. An epithelial-to-mesenchymal transition (EMT) lineage-tracing system in a mouse model of breast-to-lung metastasis reveals that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly arise from cells that have not undergone EMT; in addition, cells that have undergone EMT appear more resistant to chemotherapy. It has been suggested that epithelial-to-mesenchymal transition (EMT), in which epithelial cells depolarize and adopt a fibroblast-like morphology, is a requirement for metastasis to occur. Other studies imply that the importance of EMT relies on cell-culture-based manipulation of EMT regulators. In this issue of Nature, two groups present results that suggest that EMT is not a prerequisite for metasasis. Dingcheng Gao and colleagues trace the fate of cells that have undergone EMT in mouse model for breast-to-lung metastasis. They find that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly contain cells that have not undergone EMT. However, cells that have undergone EMT appear more resistant to chemotherapy. A microRNA that targets key EMT regulators is shown not to affect metastasis, but to reduce survival of EMT cells following chemotherapy. Raghu Kalluri and colleagues delete Twist or Snail — transcription factors that induce EMT — in a mouse model for pancreatic ductal adenocarcinoma. This leads to an increase in cell proliferation, and a greater sensitivity to chemotherapeutic agent gemcitabine, with no effect on invasion and metastasis.

This publication has 38 references indexed in Scilit: