Antitussive Action of Antihistamines Is Independent of Sedative and Ventilation Activity in the Guinea Pig

Abstract
We studied the oral actions of antihistamines from six chemical classes, namely: the ethanolamines (ENA, diphenhydramine and clemastine); ethylenediamines (EDA, pyrilamine and tripelennamine); piperidines (PPD, terfenadine and astemizole); piperazines (PPZ, hydroxyzine and cetirizine); phenothiazines (PTZ, promethazine), and the alkylamines (ALA, chlorpheniramine and bromopheniramine) on cough reflexes, pentobarbital-induced sedation and minute ventilation in the conscious guinea pig. Antihistamines of the ENA class had minimal effects on capsaicin-induced cough although both diphenhydramine (30 and 100 mg/kg p.o.) and clemastine (30 and 100 mg/kg p.o.) increased sedation time (ST). The PPZ class demonstrated both antitussive and sedating activity. The minimum effective oral antitussive dose (MED) of cetirizine and hydroxyzine was 30 and 10 mg/kg, respectively. The EDA did not exhibit antitussive activity. Tripelennamine (10, 30 and 100 mg/kg p.o.) but not pyrilamine enhanced ST. The MED for the PTZ, promethazine, was 10 mg/kg, and at 100 mg/kg promethazine increased ST. The ALA group displayed antitussive activity but only chlorpheniramine (10 mg/kg p.o.) had any effects on ST. The MED for chlorpheniramine and bromopheniramine was 3 and 10 mg/kg p.o., respectively. The PPD antihistamines, namely terfenadine and astemizole, inhibited cough (MED 30 and 10 mg/kg p.o.) without sedative effects. Of the antihistamines tested only promethazine (100 mg/kg p.o.) depressed ventilation responses; however, this dose of promethazine was associated with adverse behavioral effects. The present findings indicate that the antitussive actions of antihistamines are not directly related to histamine H1-receptor blockade because several antihistamines did not antagonize capsaicin-induced cough. In addition, the antitussive actions of antihistamines are independent of their sedative or ventilation effects.