Abstract
A review of insect adaptations for resistance to cold and for life-cycle timing reveals the complexity of the adaptations and their relationships to features of the environment. Cold hardiness is a complex and dynamic state that differs widely among species. Surviving cold depends on habitat choice, relationships with ice and water, and synthesis of a variety of cryoprotectant molecules. Many aspects are time-dependent and are integrated with other factors such as taxonomic affinity, resource availability, natural enemies, and diapause. Timing adaptations reflect the fact that all environments change over many different time frames, from days to thousands of years. Environments differ in severity and in the extent, nature, variability, and predictability of change, as well as in how reliably cues indicate probable conditions in the future. These differences are reflected by a wide range of insect life-cycle systems, life-cycle delays, levels of responsiveness to various environmental signals, genetic systems, and circadian responses. In particular, the degree of environmental change, its predictability on different time frames, and whether it can be monitored effectively dictate the balance between fixed and flexible timing responses. These same environmental features have to be characterized to understand cold hardiness, but this has not yet been done. Therefore, the following key questions must be answered in order to put cold hardiness into the necessary ecological context: How much do conditions change? How consistent is the change? How reliable are environmental signals?