MECHANICAL STICK-SLIP VIBRATIONS

Abstract
In this paper we consider the behavior of a two degree-of-freedom mechanical system incorporating static and dynamic friction, assumed to be a decreasing function of the relative sliding velocity. The model consists of two blocks linked by springs, which ride upon a moving belt. The dynamics of the system are described within a four-dimensional phase space. A three-dimensional Poincaré map is discussed together with a simpler one-dimensional map of a scalar variable. Considering the one-dimensional map it is possible to study all the attractors of the system for small belt velocities including the construction of one-dimensional basins of attraction. Thus, albeit in a partial zone of the control-phase space, the global dynamics of the system can be characterized displaying periodic, quasi-periodic and chaotic oscillations.