EFFECT OF THE GEOMETRICAL PARAMETERS IN A DOMESTIC BURNER WITH CRESCENT FLAME CHANNELS FOR AN OPTIMAL TEMPERATURE DISTRIBUTION AND THERMAL EFFICIENCY

Abstract
Domestic cookers are common tools of house appliances in the world and they have significant share in global energy consumption. Therefore, a small amount of improvement in efficiency would result in a huge drop in total energy and resource activity. This study aims at presenting numerically the thermal efficiency of a domestic burner with crescent-shaped flame channels by changing the distance from the cooker to the burner head and the diameter of the burner. The energy efficiency parameter was evaluated analyzing temperature distribution along the bottom surface of the cooker and unburnt HC, CO and NO emissions. Simulations have been carried out with methane as fuel for three different diameter and distance parameters. The results showed that the temperature on the surface and the emission values of unburnt CO, NO and HC decreased with increasing the cooker diameter and distance parameter.