Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes

Abstract
Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex. The processes of neurogenesis and neuronal migration within the developing cerebral cortex must be tightly orchestrated to enable ordered generation and transportation of neurons to designated cortical layers. The mechanism by which these two processes are integrated remains elusive. Radial glial cells, the major neural stem cells in the developing brain, serve both as progenitors and migration scaffolds for cortical neurons as they migrate. The cortical developmental disease lissencephaly (smooth brain) is a result of defects in neurogenesis and neuronal migration, and is associated with the protein LIS1 and its binding partner NDE1. In this study, we show that several key players in human cerebral cortical development, including LIS1, NDE1, dystrophin, and dystroglycan, form a molecular complex to regulate cortical neurogenesis and neuronal migration in a mouse model. This multi-protein complex is active on the basal-lateral surface of radial glial cells, which is known to provide guidance to migrating neurons. When we depleted NDE1 in mice, dystrophin and dystroglycan were lost from the membrane and radial glial cells were deformed, indicating the importance of the multi-protein complex for proper cell morphology. This effect on morphology resulted in a loss of normal migration and cortical phenotypes similar to lissencephaly. Our findings suggest that genes that regulate the structure and function of the basal-lateral membrane of radial glial cells may integrate the dual functions of these cells and determine the size, shape, and function of the cerebral cortex.