Performance Optimization of Digital Spectrum Analyzer With Gaussian Input Signal

Abstract
Analog to digital converters (ADC) and cascade integrator-comb (CIC) filters are the basic modules in a digital intermediate frequency (IF) spectrum analyzer. The optimal output signal-to-noise ratio (SNR) of the digital IF spectrum analyzer with the Gaussian input signal is considered in this letter. The idea is to strike a trade-off between the saturation error and granular error when quantizing the Gaussian input signal. This letter firstly derives a relationship among the maximum allowed input signal amplitude, input signal power, ADC quantization bits and optimal quantization SNR. Besides, an optimal clipping strategy for the CIC decimation filter with variable decimation rates is proposed. Both numerical and simulation results are presented to demonstrate that the proposed clipping method is able to achieve significant SNR gain compared with the traditional rounding or truncation method.

This publication has 8 references indexed in Scilit: