Abstract
The male has proven to be the heterogametic sex in all mammals studied so far. As is well known, the males usually have the sex chromosomes XY and the females XX. In recent years, however, many exceptions from this general pattern have been discovered. With our present knowledge, the different sex chromosome mechanisms in mammals may be divided into five main groups, and the first of them into subgroups, as follows: (i) Species with XX/XY sex chromosomes: (a) X of original size (see below), Y small; (b) X large, Y small; (c) X large, Y large: (i) end-to-end association of X and Y at male meiosis, (ii) chiasma between X and Y at male meiosis. (ii) Species with XX/XY 1 Y 2 sex chromosomes. (iii) Species with X 1 X 1 X 2 X 2 /X 1 X 2 Y sex chromosomes. (iv) Species with complicated or unknown mechanisms for sex determination. (v) Species with mosaicism of the sex chromosomes, but apparently with an XX/XY mechanism for sex determination. The present contribution will mainly deal with unusual sex chromosome inheritance, that is the groups (ii), (iii) and (iv) above, but the other two groups will also be briefly discussed and examples will be given. Recently Raicu, Kirillova & Hamar (1969) described a new sex chromosome mechanism ( X 1 X 1 X 2 X 2 /X 1 X 2 Y 1 Y 2 ) in the vole Microtus arvalis , but this observation was not confirmed by Schmid (1969), who found an ordinary XX/XY mechanism with both X and Y readily identifiable and of ‘normal’ size, the X comprising 5.6% of ( n A + X) and Y being the smallest chromosome of the complement. Late DNA replication was demonstrated in the allocyclic X and in the Y. Also Wolf (1969) found normal sex chromosomes in this species with no multivalents at male meiosis.