The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys

Abstract
Anemia of chronic inflammation is the most prevalent form of anemia in hospitalized patients. A hallmark of this disease is the intracellular sequestration of iron. This is a consequence of hepcidin-induced internalization and subsequent degradation of ferroportin, the hepcidin receptor and only known iron-export protein. This study describes the characterization of novel anti-hepcidin compound NOX-H94, a structured L-oligoribonucleotide that binds human hepcidin with high affinity (Kd = 0.65 ± 0.06 nmol/L). In J774A.1 macrophages, NOX-H94 blocked hepcidin-induced ferroportin degradation and ferritin expression (half maximal inhibitory concentration = 19.8 ± 4.6 nmol/L). In an acute cynomolgus monkey model of interleukin 6 (IL-6)–induced hypoferremia, NOX-H94 inhibited serum iron reduction completely. In a subchronic model of IL-6–induced anemia, NOX-H94 inhibited the decrease in hemoglobin concentration. We conclude that NOX-H94 protects ferroportin from hepcidin-induced degradation. Therefore, this pharmacologic approach may represent an interesting treatment option for patients suffering from anemia of chronic inflammation.