Molybdovanadophosphate (NPMoV)/hydroquinone/O2 system as an efficient reoxidation system in palladium-catalyzed oxidation of alkenes

Abstract
Molybdovanadophosphate (NPMoV)/hydroquinone/O2 system was found to be an efficient reoxidation system in palladium-catalyzed oxidations of alkenes and related compounds. Thus, acetoxylations of cycloalkenes utilizing molecular oxygen as the final oxidant were cleanly performed using the multicatalytic system consisting of Pd(OAc)2/hydroquinone/NPMoV to form 3-acetoxy-1-cycloalkenes in good yields. For example, cyclopentene and cyclohexene were converted into the corresponding allylic acetates in almost quantitative yields. Omitting hydroquinone from the catalytic system led to low yields of the acetates. Acetoxylation of cyclooctene was satisfactorily achieved by replacing hydroquinone of the multicatalytic system by chlorohydroquinone. Molybdovanadophosphates, which catalyze the smooth dehydrogenation of hydroquinone to benzoquinone with dioxygen, were found to rapidly promote the present Pd(II)-catalyzed acetoxylation of cycloalkenes. By the use of a mixed solvent of ethanol and water under these conditions, Wacker type oxidations of cyclohexene and styrene were accomplished in fair to good yields. Monosubstituted alkenes such as ethyl acrylate and acrylonitrile underwent the acetalization by the present catalytic system to give the corresponding acetals in quantitative yields.

This publication has 17 references indexed in Scilit: