Abstract
A new reactive fluorescent adenine nucleotide analogue has been synthesized and characterized: 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (BDB-T epsilon ADP). This compound reacts irreversibly with NADP+-specific isocitrate dehydrogenase. Biphasic kinetics of inactivation are observed that can be described in terms of a fast initial phase of inactivation resulting in partially active enzyme of 8-10% residual activity, followed by a slower phase leading to total inactivation. NADPH protects completely against the fast phase of the reaction, indicating that modification occurs at the coenzyme binding site, whereas isocitrate with MnSO4 protects totally against the slow phase of reaction. The inactivation rate constants for both phases exhibit nonlinear dependence on BDB-T epsilon ADP concentration, consistent with the formation of a reversible complex with the enzyme prior to irreversible modification. Covalent incorporation of BDB-T epsilon ADP is limited and specific; only 0.99 mol of reagent/mol of subunit is incorporated when the enzyme is 98% inactivated in the absence of ligands. A maximum incorporation of 0.5 mol of reagent/mol of subunit is obtained in the presence of isocitrate and MnSO4, while incorporation in the presence of NADPH equals the difference between the incorporation in the absence of ligands and that measured in the presence of isocitrate and MnSO4. It appears that 0.5 mol of reagent/mol of subunit is responsible for the fast phase of inactivation and the remaining incorporation causes the slow phase. Under all conditions used in this study, isocitrate dehydrogenase has been shown to exist as a dimer by analytical ultracentrifugation and by cross-linking with dimethyl suberimidate followed by analysis on polyacrylamide gels in the presence of sodium dodecyl sulfate. It is proposed that, in the fast phase of inactivation, 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate reacts at the coenzyme binding site of one subunit of dimeric isocitrate dehydrogenase, causing complete inactivation of the modified subunit and substantial inactivation of the other subunit. This new reagent is likely to have general applicability as an affinity label for other NADP+ binding enzymes.
Keywords