Magnetically Induced Field Effect in Carbon Nanotube Devices

Abstract
Three-terminal devices with conduction channels formed by quasi-metallic carbon nanotubes (CNTs) are shown to operate as nanotube-based field-effect transistors under strong magnetic fields. The off-state conductance of the devices varies exponentially with the magnetic flux intensity. We extract the quasi-metallic CNT chirality as well as the characteristics of the Schottky barriers formed at the metal−nanotube contacts from the temperature-dependent magnetoconductance measurements.