Nonlinear Electron Current through a Short Molecular Wire

Abstract
The voltage and the temperature behavior of inelastic interelectrode current mediated by a short molecular wire is analyzed within a nonlinear kinetic approach that accounts for strong Coulomb repulsion between transferring electrons. When the coupling to the heat bath occurs via high-frequency vibration modes we predict a generally nonlinear current-voltage characteristics (an Ohmic behavior at small voltage, rising towards saturation and being followed by an abrupt decrease at large voltage) and a bell-shaped current response vs temperature at not too large temperatures.