Abstract
Metabolic syndrome and type 2 diabetes are progressive, indolent, multi-organ diseases. Understanding the abnormalities of heat shock proteins (HSPs) in these diseases is paramount to understanding their pathogenesis. In insulin resistant states and diabetes, heat shock factor 1(HSF-1) is low in insulin sensitive tissues, resulting in low Hsp 60, 70, and 90 levels. We propose that low Hsps levels are the result of decreased insulin action leading to less phosphorylation of PI3K, PKB, and glycogen synthase kinase-3 (GSK-3). Importantly, less GSK-3 phosphorylation (and thus more GSK-3 activity) will lower HSF-1. Low Hsps make organs vulnerable to injury, impair the stress response, accelerate systemic inflammation, raise islet amyloid polypeptide, and increase insulin resistance. Feeding this cycle is excess saturated fat and calorie consumption, hypertension, inactivity, aging, and genetic predisposition- all of which are a associated with high GSK-3 activity and low Hsps. Support for the proposed “vicious” cycle is based on the observation that GSK-3 inhibition and Hsp stimulation result in increased insulin sensitivity, reduced accumulation of degenerative proteins with in the cell, improved wound healing, decreased organ damage and improved recovery from vascular ischemia. Recognizing GSK-3 and Hsps in the pathogenesis of insulin resistance, the central common feature of the metabolic syndrome, and type 2 diabetes will expand our understanding of the disease, offering new therapeutic options.

This publication has 58 references indexed in Scilit: