Revaccination of Neonatal Calves withMycobacterium bovisBCG Reduces the Level of Protection against Bovine Tuberculosis Induced by a Single Vaccination

Abstract
Cattle may provide a suitable model for testing ways of improving tuberculosis vaccine efficacy in human infants. A vaccination and challenge study was undertaken in calves to determine the optimal time to vaccinate neonatal animals withMycobacterium bovisbacillus Calmette-Guérin (BCG) for protection against tuberculosis and to determine whether revaccination with BCG was beneficial. Calves (10 per group) were vaccinated with BCG within 8 h of birth or at 6 weeks of age, when immune responses to antigens of environmental mycobacteria were detectable, or vaccinated at birth and revaccinated at 6 weeks. A control group was not vaccinated. BCG vaccination at birth induced strong antigen-specific gamma interferon (IFN-γ) and interleukin-2 (IL-2) responses and antigen-specific activation in CD4+, CD8+, and WC1+γδ T-cell subsets from blood. The proportions of animals per group with macroscopic tuberculous lesions after challenge were 0/10 for BCG at birth, 1/9 for BCG at 6 weeks, 4/10 for the revaccinated group, and 10/10 for the nonvaccinated group. There was no significant difference in the levels of protection between groups vaccinated at birth or at 6 weeks, while animals vaccinated both at birth and at 6 weeks had significantly less protection than those vaccinated only at birth. The revaccinated calves that subsequently developed tuberculous lesions had significantly stronger IFN-γ and IL-2 responses to bovine purified protein derivative after the BCG booster than those in the same group that did not develop lesions. The results indicated that BCG vaccination at birth induced a high level of immunity and that the sensitization of very young animals to antigens of environmental mycobacteria by 6 weeks of age did not affect the effectiveness of BCG. However, BCG revaccination of these young animals was contraindicated.