Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

Abstract
Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. Influenza virus is classified into types A, B and C. Influenza A virus is further divided into many subtypes, all of which exist in animals, indicating pandemic potential. By contrast, influenza B virus circulates almost exclusively in humans and, as there is no evidence for reassortment with influenza A virus, there is no indication of pandemic potential. Hence, there is far less accumulated research information regarding influenza B virus than influenza A virus. Influenza B virus, which is classified into two phylogenetic lineages, does, however, cause annual epidemics in humans and is therefore as essential to control as influenza A virus. Recently, the development of a universal vaccine and therapeutic strategies using human monoclonal antibodies (HuMAbs) has been gathering great interest. The present study reports a HuMAb neutralizing a wide range of influenza B viruses of both lineages. This HuMAb recognizes the conserved region of hemagglutinin. Moreover, therapeutic efficacy of this HuMAb was also confirmed by in vivo animal experiments. Thus, this study provides insight for the development of broad-spectrum therapeutics and a universal prophylactic vaccine against influenza B virus.