Electrophoretic Purification and Characterization of Human NADH-Glutamate Dehydrogenase Redox Cycle Isoenzymes Synthesizing Nongenetic Code-Based RNA Enzyme

Abstract
NADH-glutamate dehydrogenase (GDH) is active in human tissues, and is chromatographically purified, and studied because it participates in synthesizing glutamate, a neurotransmitter. But chromatography dissociates the GDH isoenzymes that synthesize nongenetic code-based RNA enzymes degrading superfluous mRNAs thereby aligning the cellular reactions with the environment of the organism. The aim was to electrophoretically purify human hexameric GDH isoenzymes and to characterize their RNA enzyme synthetic activity as in plants. The outcome could be innovative in chemical dependency diagnosis and management. Multi metrix electrophoresis including free solution isoelectric focusing, and through polyacrylamide and agarose gels were deployed to purify the redox cycle isoenzymes of laryngeal GDH, and to assay their RNA enzyme synthetic activities. The laryngeal GDH displayed the 28 binomial isoenzymes typical of higher organisms. Isoelectric focusing purification produced pure GDH. Redox cycle assays of the GDH isoenzymes produced RNA enzymes that degraded human stomach total RNA. In the reaction mechanism, the Schiff-base intermediate complex between α-ketoglutarate and GDH is the target of nucleophiles, resulting to the disruption of synthesis of glutamate, and RNA enzyme. The strongest nucleophiles are the psychoactive alkaloids of tobacco, cocaine, opium poppy, cannabis smoke because they are capable of reacting with GDH Schiff base intermediate to stimulate synthesis of aberrant RNA enzymes that degrade cohorts of mRNAs thereby changing the biochemical pathways and exacerbating drug overdose and chemical dependency. Electrophoretic purification, and characterization of the RNA enzyme synthetic activity set the forecourt for innovative application of GDH redox cycles in the diagnostic management of chemical dependency.